
tion

ent fluid
mber and
lated as a
thermal
odulation
Rayleigh
for large
International Journal of Thermal Sciences 44 (2005) 323–332
www.elsevier.com/locate/ijts

Effect of thermal modulation on the onset of double diffusive convec
in a horizontal fluid layer

M.S. Malashetty∗, D. Basavaraja

Department of Mathematics, Gulbarga University, Gulbarga-585 106, India

Received 3 March 2004; received in revised form 8 September 2004; accepted 8 September 2004

Available online 13 November 2004

Abstract

The effect of time periodic boundary temperatures on the onset of double diffusive convection in a horizontal two compon
layer is studied using a linear stability analysis. The perturbation method is used to compute the critical thermal Rayleigh nu
the corresponding wave number for small amplitude temperature modulation. The correction thermal Rayleigh number is calcu
function of frequency of the modulation, Prandtl number, solute Rayleigh number, and the diffusivity ratio. It is found that the
modulation may stabilize an unstable system or destabilize a stable system. In particular it is found that low frequency symmetric m
is destabilizing whereas the asymmetric modulation and lower wall temperature modulation are stabilizing. The effect of the solute
number, ratio of the diffusivities and the Prandtl number are also reported. It is also found that the effect of modulation disappears
frequency.
 2004 Elsevier SAS. All rights reserved.
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1. Introduction

The study of convective motions produced by unsta
density distributions in a fluid is now highly developed. Mo
attention has been given to the linear and nonlinear st
ity of a horizontal fluid layer heated from below and coo
from above. It has been shown that if gradients of two str
fying agencies, such as heat and salt, having different d
sivities are simultaneously present in a fluid layer, a var
of interesting convective phenomena can occur which are
possible in a single component fluid. The case of two or m
stratifying agencies has been the subject of extensive t
retical and experimental investigations. Excellent review
these studies have been reported by Turner [1–3], Hup
and Turner [4], Platten and Legros [5]. The interest in
study of two or multicomponent convection has develo
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as a result of the marked difference between single c
ponent and multicomponent systems. In contrast to si
component systems, convection sets in even when de
decreases with height, that is, when the basic state is
drostatically stable. The double diffusive convection is
importance in various fields such as high quality crystal p
duction, oceanography, production of pure medication,
lidification of molten alloys, and geothermally heated lak
and magmas.

There are many investigations available on the ef
of time dependent boundary temperature on the onse
Rayleigh–Benard convection. Most of the findings relate
this problem have been reviewed by Davis [6]. The bulk
the existing work has concentrated on Rayleigh–Benard
vection subject to boundary temperature modulation. A
ear stability analysis in case of small amplitude of te
perature modulation is performed by Venezian [7]. He
established that the onset of convection can be delayed o
vanced by the out of or in phase modulation of the bound
temperatures, respectively as compared to the unmodu

system. It has been found that at low frequencies the equilib-
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Nomenclature

d height of the fluid layer . . . . . . . . . . . . . . . . . . . m
g acceleration due to gravity . . . . . . . . . . . . . m·s−2

k unit vector in the vertical direction . . . . . . . . . m
l,m wave numbers inx, y directions . . . . . . . . . m−1

p pressure . . . . . . . . . . . . . . . . . . . . . . . . kg·m−1·s−2

pH basic state pressure . . . . . . . . . . . . . . kg·m−1·s−2

Pr Prandtl number,= ν
κT

q velocity vector,(u, v,w) . . . . . . . . . . . . . . m·s−1

R thermal Rayleigh number,= β1g�T d3

νκT

Rs solute Rayleigh number,= β2g�Sd3

νκT

S solute concentration . . . . . . . . . . . . . . . . . kg·m−3

SH basic state solute concentration . . . . . . . kg·m−3

SR reference solute concentration . . . . . . . . kg·m−3

�S salinity difference between the walls . . kg·m−3

T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
TH basic state temperature . . . . . . . . . . . . . . . . . . . . K
TR reference temperature . . . . . . . . . . . . . . . . . . . . . K
�T temperature difference between the walls . . . K

t time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
(x, y, z) space coordinates . . . . . . . . . . . . . . . . . . . . . . . . m

Greek symbols

α horizontal wave number
αc critical wave number
β1 thermal expansion coefficient . . . . . . . . . . . . K−1

β2 solute expansion coefficient . . . . . . . . . kg−1·m3

ε amplitude of modulation
κS solute diffusivity . . . . . . . . . . . . . . . . . . . . m2·s−1

κT thermal diffusivity . . . . . . . . . . . . . . . . . . . m2·s−1

ν kinematic viscosity . . . . . . . . . . . . . . . . . . m2·s−1

τ diffusivity ratio, κS

κT

ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg·m−3

ρH basic state density . . . . . . . . . . . . . . . . . . . kg·m−3

ρR reference density . . . . . . . . . . . . . . . . . . . . kg·m−3

φ phase angle
Ω frequency of the modulation . . . . . . . . . . . . . s−1

ω non-dimensional frequency,= Ωd2
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rium state becomes unstable, because at low frequencie
disturbances grow to a sufficient size that the inertia eff
become more important. Rosenblat and Herbert [8], fo
the asymptotic solution of the low frequency and arbitr
amplitude thermal modulation problem. The solution is d
cussed from the viewpoint of the stability or otherwise
the basic state, and possible stability criteria are analy
They have also made some comparison with known ex
imental results. Rosenblat and Tanaka [9] have also stu
the effect of thermal modulation on the onset of Rayleig
Benard convection when the temperature gradient has b
steady and time periodic component. It has been found
in general, there is enhancement of the critical value o
suitably defined Rayleigh number. Roppo et al. [10] h
performed weakly nonlinear stability analysis and found t
the modulation produces a range of stable hexagons nea
critical Rayleigh number. These authors have reported
for low frequencies the modulation is destabilizing, wher
at high frequencies some stabilization is apparent. Finuc
and Kelly [11] performed both theoretical and experim
tal investigation of the thermal modulation in a horizon
fluid layer. A numerical analysis of the linear stability equ
tions indicated that the linear assumption is valid at the
frequencies of modulation. A nonlinear analysis employ
the shape assumption and free boundary conditions wa
veloped and examined numerically. They found both ex
imentally and numerically that at low frequencies the m
ulation is destabilizing, whereas at high frequencies so
stabilization is apparent.

The above mentioned studies have reported that the
fect of thermal modulation is to alter the critical val

of Rayleigh number by comparison with the unmodulated,
e

e

-

steady case. These works are restricted to a single co
nent fluid layer. To our knowledge no studies on the effec
temperature modulation on double diffusion convection
a horizontal two component fluid layer are available in
literature. The purpose of the present paper therefore,
study the effect of thermal modulation on double diffus
convection in a horizontal fluid layer.

2. Mathematical formulation

We consider a viscous, incompressible two compon
fluid layer of thicknessd and infinite extent in the horizon
tal direction subject to an adverse temperature gradient
a stabilizing concentration gradient. A Cartesian coordin
system is chosen with the origin in the lower boundary
z-axis vertically upward. With the assumptions and appr
imations frequently made for the study of double diffus
convection in a horizontal two component fluid layer, t
basic equations are:

∇ · q = 0 (1)
∂q
∂t

+ q · ∇q = − 1

ρR

∇p + ρ

ρR

g + ν∇2q (2)

∂T

∂t
+ q · ∇T = κT ∇2T (3)

∂S

∂t
+ q · ∇S = κS∇2S (4)

ρ = ρR

[
1− β1(T − TR) + β2(S − SR)

]
(5)

The time dependent wall temperatures are externally

posed, and are given by
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T = TR + �T

2
[1+ ε cosΩt] at z = 0 and (6a)

T = TR − �T

2

[
1− ε cos(Ωt + φ)

]
at z = d (6b)

Hereε represents a small amplitude,Ω the frequency andφ
the phase angle.

The boundary conditions on concentration are

S = SR + �S

2
at z = 0 (7a)

S = SR − �S

2
at z = d (7b)

We consider three types of temperature modulations nam

Case (a) symmetric (in phase,φ = 0),
Case (b) asymmetric (out of phase,φ = π ), and
Case (c) only lower wall temperature is modulated wh

the upper one is held at constant temperature(φ =
−i∞).

2.1. Basic state

The basic state of the fluid is quiescent and is descr
by

q = (0,0,0), T = TH (z, t)

p = pH (z, t), ρ = ρH (z, t), S = SH (z) (8)

The temperatureTH (z, t), solute concentrationSH (z),
pressurepH (z, t) and densityρH (z, t) satisfy the following
equations:

∂TH

∂t
= κT

∂2TH

∂z2
(9)

d2SH

dz2
= 0 (10)

−∂pH

∂z
= ρH g (11)

ρH = ρR

[
1− β1(TH − TR) + β2(SH − SR)

]
(12)

The solution of Eq. (9) subject to the boundary con
tions (6), consists of the sum of a steady temperature
Ts(z) and an oscillating partεT1(z, t):

TH (z, t) = Ts(z) + εT1(z, t) (13a)

where

Ts(z) = TR + �T

2

(
1− 2z

d

)

T1(z, t) = �T

2

{
Re

{[
a(λ)eλz/d + a(−λ)e−λz/d

]
e−iΩt

}}

λ = (1− i)

[
Ωd2

2κT

]1/2

, a(λ) =
[
e−iφ − e−λ

eλ − e−λ

]

andRe stands for the real part.
The solution of Eq. (10) subject to the boundary con
tions (7) is

SH = SR + �S

2

(
1− 2z

d

)
(13b)

2.2. Linear stability analysis

For the small disturbances, we assume solution forq, T ,
S, p andρ in the form

q = q′, T = TH + T ′, S = SH + S′

p = pH + p′, ρ = ρH + ρ′ (14)

where the prime indicates that the quantities are infinites
perturbations.

Substituting Eq. (14) into Eqs. (1)–(5) and using the ba
state equations and neglecting nonlinear terms in pertu
quantities, we obtain the following equations for the p
turbed quantities:

∂q′

∂t
= − 1

ρR

∇p′ + (
β1T

′ − β2S
′)gk + ν∇2q′ (15)

∂T ′

∂t
+ w′

(
∂TH

∂z

)
= κT ∇2T ′ (16)

∂S′

∂t
+ w′

(
dSH

dz

)
= κS∇2S′ (17)

wherek is the unit vector in the positivez direction.
The boundary conditions for the perturbed velocity, te

perature and solute concentration are

w′ = ∂2w′

∂z2
= T ′ = S′ = 0 atz = 0, d (18)

The boundary conditions on velocity are stress-free c
ditions and those on temperature and solute represen
the boundaries are perfectly conducting to heat and solu

We eliminatep′ from Eq. (15) and render the resultin
equation and Eqs. (16) and (17) dimensionless by using
following non-dimensional variables

(x, y, z) = (x∗, y∗, z∗)d

w′ =
(

κT

d

)
w∗, t =

(
d2

κT

)
t∗

T ′ = (�T )T ∗, S′ = (�S)S∗

R = β1g�T d3

νκT

, Rs = β2g�Sd3

νκT

, Pr = ν

κT

τ = κS

κT

, ω = Ωd2

κT

(19)

whereR is the thermal Rayleigh number,Rs is the solute
Rayleigh number,Pr is the Prandtl number,τ is the dif-
fusivity ratio andω is the frequency. The linearized no

dimensional equations are written as (on dropping asterisks):
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∂

∂t
− Pr ∇2

)
∇2w = R Pr ∇2

1T − Rs Pr ∇2
1S (20)(

∂

∂t
− ∇2

)
T = −w

∂TH

∂z
(21)(

∂

∂t
− τ∇2

)
S = w (22)

where

∇2
1 = ∂2

∂x2
+ ∂2

∂y2
, ∇2 = ∇2

1 + ∂2

∂z2

Eqs. (20)–(22) are combined to obtain a single differen
equation for the vertical component of velocityw as:{(

∂

∂t
− Pr ∇2

)(
∂

∂t
− ∇2

)(
∂

∂t
− τ∇2

)
∇2

+ R Pr

(
∂

∂t
− τ∇2

)
∂TH

∂z
∇2

1

+ Rs Pr

(
∂

∂t
− ∇2

)
∇2

1

}
w = 0 (23)

The boundary conditions can also be expressed in term

w by making use of (20), which requires∂
4w

∂z4 = 0 at the
boundaries. Thus Eq. (23) is to be solved subject to the
mogeneous boundary conditions

w = ∂2w

∂z2
= ∂4w

∂z4
= · · · = 0 atz = 0,1 (24)

The dimensionless temperature gradient appearing
Eq. (23) can be obtained from Eq. (13a) as

∂TH

∂z
= −1+ εf (25)

where

f = Re
{[

A(λ)eλz + A(−λ)e−λz
]
e−iωt

}
λ = (1− i)

√
ω/2 and A(λ) = λ

2
a(λ)

The horizontal dependence ofw is factorable, and we
look for solutions with a single wave numberα, such that
∇2

1w = −α2w. The dependence exp[−(lx + my)] of w on
the horizontal coordinates is implied throughout.

3. Method of solution

We apply the perturbation method to obtain the eig
functionsw and eigenvaluesR of Eq. (23) for a temper
ature profile that departs from the linear one by terms
orderε. Thus it follows that the eigenfunctions and eige
values which are obtained in this problem differ from tho
associated with the two component Rayleigh–Benard p
lem by quantities of orderε.

Accordingly, we substitute

w = w0 + εw1 + ε2w2 + · · · (26)
R = R0 + ε2R2 + · · · (27)
f

in Eq. (23) and equate coefficients of like powers ofε on
both side to obtain (up to orderε2)

Lw0 = 0 (28)

Lw1 = Pr

(
∂

∂t
− τ∇2

){−R0f ∇2
1w0

}
(29)

Lw2 = Pr

(
∂

∂t
− τ∇2

){
R2∇2

1w0 − R0f ∇2
1w1

}
(30)

where

L ≡
(

∂

∂t
− Pr ∇2

)(
∂

∂t
− ∇2

)(
∂

∂t
− τ∇2

)
∇2

− R0Pr

(
∂

∂t
− τ∇2

)
∇2

1 + Rs Pr

(
∂

∂t
− ∇2

)
∇2

1

andw0, w1, w2 are required to satisfy the boundary con
tions of Eq. (24).

In Eq. (27) the odd powers ofε are missing becaus
changing the sign ofε shifts the time origin only which doe
not affect the problem of stability and thusR should be in-
dependent of the sign ofε, i.e.,R1, R3, . . . must be zero.

The eigenfunctionw0 is the solution of the problem wit
ε = 0, that is the unmodulated system. The marginally sta
solutions for this problem are

w
(n)
0 = sinnπz (31)

with corresponding eigenvalues

R
(n)
0 = (α2 + n2π2)3

α2
+ Rs

τ
(32)

For a fixed value ofα the least eigenvalue occurs forn = 1.
R0 assumes the minimum value given by

R0 =
(

27

4
π4 + Rs

τ

)
(33a)

atα = αc whereαc is given by

αc = π√
2

(33b)

(For details, see, e.g., [1].)
The equation forw1 then takes the form

Lw1 = R0Pr α2
(

∂

∂t
− τ∇2

)
f sinπz (34)

Now let(
∂

∂t
− τ∇2

)
= (−iω + τα2 − τD2) whereD = d

dz

Thus(
∂

∂t
− τ∇2

)
f sinπz

= [
τ
(
π2 + α2) + iω(τ − 1)

]
f sinπz − 2τλπf ′ cosπz

(35)

with {[ ] }

f ′ = Re A(λ)eλz − A(−λ)e−λz e−iωt
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Using Eqs. (35), (34) becomes

Lw1 = R0Pr α2 Re
{
L1f sinπz − 2πτλf ′ cosπz

}
(36)

where

L1 = τ
(
π2 + α2) + iω(τ − 1)

We solve Eq. (36) forw1 by expanding the right-han
side in Fourier series expansions and inverting the ope
L term by term. Thus we obtain

w1 = R0Pr α2
{
L1

∑ An(λ)

L(ω,n)
sinnπze−iωt

− 2πλτ Pr
∑ Bn(λ)

L(ω,n)
cosnπze−iωt

}
(37)

For details, see Appendix A. The equation forw2 then can
be written as

Lw2 = −R2Pr τα2(α2 + π2)sinπz

+ R0Pr α2Re{Lnf w1 − 2τDf Dw1} (38)

We shall not require the solution of this equation,
merely use it to determineR2, the first non-zero correc
tion to R. The solubility condition requires that the tim
independent part of the right-hand side should be orthog
to sinπz. Therefore multiplying Eq. (38) by sinπz and inte-
grating between 0 and 1 we obtain

R2 = R2
0α2

2τ(α2 + π2)
Re

{ ∞∑
n=1

L1L
∗
n|An(λ)|2L∗(ω,n)

|L(ω,n)|2

− 4π2
∣∣λ2

∣∣2τ2
∞∑

n=1

nBn(λ)L∗(ω,n)C∗
n(λ)

|L(ω,n)|2
}

(39)

For details, see Appendix A. In the above equation the s
mation extends over even values ofn for case (a), odd value
of n for case (b) and for all integer values ofn for case (c).

The value of the Rayleigh numberR obtained by this
procedure is the eigenvalue corresponding to the eigenf
tion w, which, though oscillating, remains bounded in tim
R is a function of the horizontal wave numberα and the am-
plitude of the modulationε, accordingly we expand

R(α, ε) = R0(α) + ε2R2(α) + · · · (40)

α = α0 + ε2α2 + · · · (41)

The critical value of the thermal Rayleigh numberR is com-
puted up to O(ε2) by evaluatingR0 andR2 atα0 = αc given
by Eq. (33b). It is only when one wishes to evaluateR4, α2
must be taken in to account [7]. In view of this we write

Rc(α, ε) = R0c(α0) + ε2R2c(α0) (42)

whereR0c andR2c can be obtained from Eqs. (32) and (3
respectively.

If R2c is positive, supercritical instability exists andR
has minimum atε = 0. WhenR2c is negative, subcritica
instability is possible. In this case, we have from Eq. (4

ε2 < (R0c/R2c). From this we can determine the minimum
-

range ofε, by assigning values to the various physical
rameters involved in the problem. Thus the range of
amplitude of modulation, which causes subcritical instab
ties in different physical situations, can be explained.

To the order ofε2, R2c is obtained for the cases where t
oscillating temperature field is (a) symmetric, (b) asymm
ric and (c) when only the lower wall temperature is os
lating while upper wall is held at constant temperature. T
variation ofR2c with ω for different values ofPr, τ andRs
are depicted in Figs. 1–6 and the results are discussed i
next section.

4. Results and discussion

The effect of symmetric modulation of the boundary te
peratures on the onset of double diffusive convection
shown in Figs. 1–3 for different values ofPr, τ and Rs.
We observe thatR2c is negative at low frequencies, ind
cating that the symmetric modulation advances the ons
convection at low frequencies, that is, in the case of s
metric modulation the convection occurs at a lower ther
Rayleigh number than in the unmodulated system. This
sult is identical to the results obtained by many investi
tors mentioned in the introduction section in case of sin
component systems. However for large frequencies,R2c is
positive, indicating that the high frequency symmetric m
ulation has a stabilizing effect. The peak value ofR2c de-
pends on the Prandtl number, diffusivity ratio and the so
Rayleigh number.
Fig. 1. Variation ofR2c with ω for different values of the Prandtl numberPr.
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Fig. 2. Variation ofR2c with ω for different values of the diffusivity ratioτ .

Fig. 3. Variation ofR2c with ω for different values of the solute Rayleig
numberRs.

Fig. 1 shows the variation ofR2c with ω, for different val-
ues of Prandtl numberPr and fixed values of solute Rayleig
numberRs and diffusivity ratioτ , in respect of symmetric
modulation of the wall temperature. We find thatR2c is pos-
itive over a wide range of values of the frequencyω. We also

observe from the figure that as Prandtl numberPr increases,
Fig. 4. Variation ofR2c with ω for different values of the Prandtl numberPr.

the value ofR2c decreases indicating that the effect of lar
Prandtl number is to reduce the effect of the thermal mo
lation. On the other hand small Prandtl number fluid sys
is more stable in the presence of thermal modulation as c
pared to the unmodulated system.

The effect of diffusivity ratioτ on R2c for the case of
symmetric modulation of the wall temperature is shown
Fig. 2. We observe that an increase in the value ofτ de-
creases the value ofR2c. This indicates that in case of sym
metric modulation, the effect of an increase in the value
diffusivity ratio is to minimize the effect of thermal mod
ulation. It is important to note that small values ofτ have
strong stabilizing effect and on the other hand the effec
modulation is small for largerτ .

The effect of solute Rayleigh numberRs on the stabil-
ity of the system for the case of symmetric modulation
the wall temperature is shown in Fig. 3. We notice that
increase in the value ofRs increases the value ofR2c, indi-
cating that the effect of large value of the solute Rayle
numberRs is to delay the onset of convection as expecte

Figs. 4–6 illustrates the effect of asymmetric modulat
and lower wall temperature modulation on the stability
a two-component fluid system. It is important to note t
in these two types of modulationR2c will become positive
for the whole range of values of the frequencyω except for
τ � 0.3 in case of lower wall temperature modulation. Th
these two types of modulation have, in general, stabiliz
effect. The peak value ofR2c depends on the parametersRs,
τ and the Prandtl number.

The effect of Prandtl number on the onset of convec

in the presence of asymmetric temperature modulation and
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Fig. 5. Variation ofR2c with ω for different values of the diffusivity ratioτ .

Fig. 6. Variation ofR2c with ω for different values of the solute Rayleig
numberRs.

lower wall temperature modulation with fixed values ofRs
andτ is shown in Fig. 4. We note from this figure that the
fect of increasing Prandtl number is to minimize the effec
modulation, as in the case of symmetric modulation (Fig.
This result is similar to the one in the case of a single co

ponent fluid layer with thermal modulation.
Fig. 5 depicts the variation ofR2c with ω, for different
values of the diffusivity ratio for the case of asymmet
modulation and lower wall temperature modulation. The
ure demonstrates that an increase in the value ofτ decreases
the value ofR2c, indicating that, the largerτ reduces the
effect of thermal modulation, as in the case of symme
modulation (Fig. 3). It is interesting to note thatR2c become
very small forτ > 0.3, for a range of values ofω indicating
that for τ larger than 0.3 the system matches the unm
ulated case in the presence of asymmetric modulation
case of lower wall temperature modulation, a range ofω ex-
ists whereR2c is negative implying a destabilizing effect fo
τ � 0.3. These results correspond to the parameter va
chosen in the computation.

The effect of solute Rayleigh numberRs on correction
Rayleigh numberR2c for the case of asymmetric modulatio
and lower wall temperature modulation is shown in Fig
We observe that there is a range ofω where increasingRs
decreasesR2c and a range ofω where the effect is opposite
The range ofω also depends on other parameters and
type of modulation.

In each case of modulation there is a critical freque
(ωc) at which the correction Rayleigh numberR2c is maxi-
mum. It is highly impossible to obtain an explicit analytic
relation between this critical frequency and the correspo
ing correction Rayleigh number. However the critical f
quencyωc at which the correction Rayleigh numberR2c is
maximum (positive/negative) for different values of Pran
number, diffusivity ratio and the solute Rayleigh numbe
reported in Tables 1 and 2. There are two peak value
R2c for the symmetric modulation, one positive and anot
negative. On the other hand, for the asymmetric and o
lower wall temperature modulation casesR2c has only posi-
tive peak value except forτ � 0.3 in the case of lower wal
temperature modulation.

The low-frequency thermal modulation has a signific
effect on the stability of the system. The results of the pre
study are expected to be useful in controlling convection
thermal modulation, in a two-component system.

5. Conclusions

In the present paper we made an analytical study of
effect of temperature modulation on double diffusive c
vection in a two component horizontal fluid layer. The p
turbation method is used to find the critical thermal Rayle
number as a function of frequency of the modulation, Pra
number, diffusivity ratio and solute Rayleigh number. Th
types of thermal modulations are considered and arrive
the following conclusions:

(1) The low frequency symmetric modulation is destabi
ing while high frequency symmetric modulation is a
ways stabilizing. The asymmetric modulation and low

wall temperature modulation are, in general, stabilizing
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Table 1
Critical frequencyωc and the corresponding correction Rayleigh num
R2c for symmetric modulation

(i) τ = 0.050,Rs = 10

Pr Negative
peak value
R2c/R0c

ωc Positive
peak value
R2c/R0c

ωc

1.0 −0.012 6.05 0.39 41
2.0 −0.007 6.55 0.23 50
3.0 −0.005 7.00 0.16 56
4.0 −0.004 7.05 0.12 58
5.0 −0.003 7.05 0.09 60
6.0 −0.003 7.50 0.08 62
7.0 −0.002 7.55 0.07 62
8.0 −0.002 7.55 0.06 62
9.0 −0.002 8.00 0.05 63

10.0 −0.001 8.55 0.04 65

(ii) Pr = 1.0, Rs = 10

τ Negative
peak value
R2c/R0c

ωc Positive
peak value
R2c/R0c

ωc

0.05 −0.012 6.05 0.398 41.00
0.07 −0.013 7.05 0.252 41.05
0.10 −0.014 8.05 0.154 41.50
0.30 −0.011 13.05 0.026 50.00
0.50 −0.008 13.55 0.007 54.55
0.70 −0.006 13.55 0.002 58.05

(iii) Pr = 1.0, τ = 0.05

Rs Negative
peak value
R2c/R0c

ωc Positive
peak value
R2c/R0c

ωc

10 −0.0121 6.05 0.39 41
50 −0.0249 6.05 0.77 41

102 −0.0428 6.05 1.24 41
103 −0.0012 6.55 4.76 70
104 −0.0001 7.00 6.74 99

for all frequencies. However in case of lower wall te
perature modulation, there is a range ofω for which the
system is unstable whenτ is greater than 0.3. Thus, a
in the case of a single component system, thermal m
ulation can destabilize a mode that is stable in the
modulated case, or stabilize an unstable mode, with
stability characteristics depending on the frequency
the modulation, solute Rayleigh number, Prandtl nu
ber and the diffusivity ratio.

(2) The effect of large Prandtl number is found to be de
bilizing while small Prandtl number fluid systems a
more stable in the presence of thermal modulation. T
effect is similar to the one in case of a single compon
fluid layer.

(3) The effect of increasing solute Rayleigh number is
stabilize the system in the case of symmetric mod
tion. In case of asymmetric modulation and lower w
temperature modulation, there is a range ofω where in-
creasingRs decreasesR2c and a range ofω where the
effect is opposite.

(4) The effect of small diffusivity ratio is to make the syste

more stable in the presence of thermal modulation.
Table 2
Critical frequencyωc and the corresponding correction Rayleigh num
R2c for asymmetric and lower wall temperature modulation

(i) τ = 0.050,Rs = 10

Pr Asymmetric modulation Lower wall temperature
modulation

R2c/R0c ωc R2c/R0c ωc

1.0 4.85 5.00 4.78 5.00
2.0 3.14 7.50 3.09 7.05
3.0 2.36 8.55 2.32 8.55
4.0 1.90 9.00 1.86 9.05
5.0 1.59 10.00 1.56 10.00
6.0 1.36 10.00 1.34 10.05
7.0 1.20 10.50 1.18 10.05
8.0 1.07 10.50 1.05 10.50
9.0 0.97 10.55 0.95 10.55

10.0 0.88 11.00 0.86 10.55

(ii) Pr = 1.0, Rs = 10

τ Asymmetric
modulation

Lower wall temperature modulation

R2c/R0c ωc Positive
peak
value
R2c/R0c

ωc Negative
peak
value
R2c/R0c

ωc

0.05 4.85 5.0 4.78 5.00 – –
0.07 11.9 0.5 11.07 0.55 – –
0.10 14.8 0.5 13.54 0.55 – –
0.30 1.27 0.5 1.14 0.50 −0.20 25.55
0.50 0.66 0.05 0.66 0.05 −0.65 20.00
0.70 0.49 0.05 0.49 0.05 −0.99 20.50

(iii) Pr = 1.0, τ = 0.05

Rs Asymmetric modulation Lower wall temperature
modulation

R2c/R0c ωc R2c/R0c ωc

10 4.85 05 4.78 5.00
50 4.23 14 4.33 15.0

102 3.76 19 4.38 22.0
103 2.36 60 7.37 65.0
104 11.37 64 16.37 79.0

(5) The effect of modulation disappears for large frequ
cies, so that the stability or instability of the syste
matches the unmodulated case, as in the case of a
gle component system.
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Appendix A

We solve Eq. (36) forw1 by expanding the right-han
side of it in Fourier series expansions and inverting the o
atorL term by term. For this, we need the following Four

series expansions:
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n-
og-

t of

y

gnm(λ) = 2

1∫
0

eλz sinnπzsinmπzdz

= − 4nmπ2λ[1+ (−1)n+m+1eλ]
[λ2 + (n + m)2π2][λ2 + (n − m)2π2] (A.1)

fnm(λ) = 2

1∫
0

eλz cosnπzcosmπzdz

= −2λ[λ2 + (n2 + m2)π2][1+ (−1)n+m+1eλ]
[λ2 + (n + m)2π2][λ2 + (n − m)2π2]

(A.2)

so that

eλz sinmπz =
∞∑

n=1

gnm sinnπz (A.3)

eλz cosmπz =
∞∑

n=1

fnm cosnπz (A.4)

Let us now define

L(ω,n) = (
ω2B1 − B3

) − iωB2 (A.5)

where

B1 = (
α2 + n2π2)2(

τ + (1+ Pr)
)

B2 = ω2(α2 + n2π2)
− (

α2 + n2π2)3(
Pr + τ(1+ Pr)

) + Pr α2(R0 − Rs)

B3 = τ Pr
(
α2 + n2π2)4 − Pr α2(α2 + n2π2)(τR0 − Rs)

It is easily seen that

L
(
sinnπze−iωt

) = L(ω,n)sinnπze−iωt

L
(
cosnπze−iωt

) = L(ω,n)cosnπze−iωt

and Eq. (36) now reads

Lw1 = R0Pr α2Re
{∑

L1
[
A(λ)gn1(λ)

+ A(−λ)gn1(−λ)
]
sinnπze−iωt

− 2πλτ
∑[

A(λ)fn1(λ)

+ A(−λ)fn1(−λ)
]
cosnπze−iωt

}
(A.6)

so that

w1 = R0Pr α2
{
L1

∑ An(λ)

L(ω,n)
sinnπze−iωt

− 2πλτ Pr
∑ Bn(λ)

L(ω,n)
cosnπze−iωt

}
(A.7)

where

An(λ) = A(λ)gn1(λ) + A(−λ)gn1(−λ)
Bn(λ) = A(λ)fn1(λ) − A(−λ)fn1(−λ)
To simplify Eq. (30) forw2, we need(
∂

∂t
− τ∇2

)
f w1 = Lnf w1 − 2τDf Dw1 (A.8)

where

Ln = τ
(
α2 + n2π2) + iω(τ − 1)

The equation forw2 then can be written as

Lw2 = −R2Pr τα2(α2 + π2)sinπz

+ R0Pr α2Re{Lnf w1 − 2τDf Dw1} (A.9)

The solubility condition requires that the time-indepe
dent part of the right-hand side of Eq. (A.9) must be orth
onal to sinπz. Multiply Eq. (A9) by sinπz and integrating
between 0 and 1 we obtain

R2 =
[

2R0

τ(α2 + π2)

]
Re

{
Ln

1∫
0

f w1 sinπzdz

− 2τ

1∫
0

Df Dw1 sinπzdz

}
(A.10)

where an over bar denotes the time average.
We have the Fourier series expansions

f sinπz = Re
∑

An(λ)sinnπze−iωt (A.11)

Df sinπz = Re
∑

λCn(λ)sinnπze−iωt (A.12)

where

Cn(λ) = A(λ)gn1(λ) − A(−λ)gn1(−λ)

We also note the fact that the time average of produc
two complex functionsA andB is given by

A · B = 1

2π

2π∫
0

AB dt = 1

2
A∗B = 1

2
AB∗ (A.13)

where∗ denotes a complex conjugate.
Using Eqs. (A.12) and (A.13) in Eq. (A.11) we obtain

R2 = R2
0α2

2τ(α2 + π2)
Re

{ ∞∑
n=1

L1L
∗
n|An(λ)|2L∗(ω,n)

|L(ω,n)|2

− 4π2
∣∣λ2

∣∣2τ2
∞∑

n=1

nBn(λ)L∗(ω,n)C∗
n(λ)

|L(ω,n)|2
}

(A.14)

Eq. (A.9) can now be solved forw2, and the procedure ma
be continued to obtain further corrections tow andR.

We need the real part of(L1L
∗
nL

∗) which can be easily
calculated

Re
{
L1L

∗
nL

∗} = (
ω2B1 − B3

)
B4 + ωB2B5 (A.15)∣∣L(ω,n)

∣∣2 = (
ω2B1 − B3

)2 + ω2B2
2 (A.16)

∣∣ ∣∣2 16π4n2ω2
An(λ) = [ω2 + (n + 1)4π4][ω2 + (n − 1)4π4] (A.17)
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76)
where

B4 = τ2(α2 + π2)(α2 + n2π2) + ω2(τ − 1)2

B5 = ωτ(τ − 1)
((

α2 + π2) − (
α2 + n2π2))

Similarly we can also find real part of(Bn(λ)L∗(ω,n)Cn(λ))

easily.
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