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Abstract

The effect of time periodic boundary temperatures on the onset of double diffusive convection in a horizontal two component fluid
layer is studied using a linear stability analysis. The perturbation method is used to compute the critical thermal Rayleigh number and
the corresponding wave number for small amplitude temperature modulation. The correction thermal Rayleigh nhumber is calculated as a
function of frequency of the modulation, Prandtl number, solute Rayleigh number, and the diffusivity ratio. It is found that the thermal
modulation may stabilize an unstable system or destabilize a stable system. In particular it is found that low frequency symmetric modulation
is destabilizing whereas the asymmetric modulation and lower wall temperature modulation are stabilizing. The effect of the solute Rayleigh
number, ratio of the diffusivities and the Prandtl number are also reported. It is also found that the effect of modulation disappears for large
frequency.

0 2004 Elsevier SAS. All rights reserved.
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1. Introduction as a result of the marked difference between single com-
ponent and multicomponent systems. In contrast to single
component systems, convection sets in even when density
decreases with height, that is, when the basic state is hy-
. drostatically stable. The double diffusive convection is of
importance in various fields such as high quality crystal pro-
duction, oceanography, production of pure medication, so-
lidification of molten alloys, and geothermally heated lakes
and magmas.

There are many investigations available on the effect

The study of convective motions produced by unstable
density distributions in a fluid is now highly developed. Most
attention has been given to the linear and nonlinear stabi
ity of a horizontal fluid layer heated from below and cooled
from above. It has been shown that if gradients of two strati-
fying agencies, such as heat and salt, having different diffu-
sivities are simultaneously present in a fluid layer, a variety

of interesting convective phenomena can occur which are not | .
9 b of time dependent boundary temperature on the onset of

pos§|b!e na smg'le component fluid. The case of two ormore Rayleigh—Benard convection. Most of the findings related to
stratifying agencies has been the subject of extensive theo-, . : :

. . ) S . this problem have been reviewed by Davis [6]. The bulk of
retical and experimental investigations. Excellent reviews of

. the existing work has concentrated on Rayleigh—Benard con-
these studies have been reported by Turner [1-3], Huppert " . . . i

. . I . Alin-
and Turner [4], Platten and Legros [5]. The interest in the vection subject to boundary temperature modulation n

tudy of t i " tion has develobed ear stability analysis in case of small amplitude of tem-
study ot two or mufticomponent convection has develope perature modulation is performed by Venezian [7]. He has

established that the onset of convection can be delayed or ad-
* Corresponding author. Tel.: +91 08472 245633 (0), +91 08472 250086 YaNC€d by the out of or in phase modulation of the boundary
(R), fax: 91 08472 245927. temperatures, respectively as compared to the unmodulated
E-mail address: malashettyms@yahoo.com (M.S. Malashetty). system. It has been found that at low frequencies the equilib-
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Nomenclature

d height of the fluid layer ................... m t Me .. $

g acceleration due to gravity............. .81 (x,y,z) spacecoordinates........................ m

k unit vector in thg vertigal d.irection ......... ) M Greek symbols

l,m wave numbers in, y directions ......... m i

p PreSSUre........covvevneennnnn.. kg 1.s72 « horizontal wave number

PH basic state pressure.............. -hgl.s2 e critical wave number

Pr Prandtl number= B1 thermal expansion coefficient............ -k
. kT 1 B2 solute expansion coefficient . ........ Kgmd

q velocity vector,(u, v, w) ...t .. s . :

R thermal Ravleiah b ﬁlgﬂdg € amphtude of modulatlon B

yleigh numbes Ks solute diffusivity .................... fas 1

Rs solute Rayleigh numbes ﬂzs;fTSds KT thermal diffusivity . .................. fas 1

S solute concentration . ................ Ry 3 kinematic V'Scoi'ty """"""""" =

Sy basic state solute concentration . .... .. -Thg® diffusivity ratio,

Sk reference solute concentration . ... ... .. kg3 i density..............oo kg3

AS salinity difference between the walls .. kg3 PH basic state density................... g3

T teMPErature . ... eeee e, K PR reference density.................... kg3

Ty basic state temperature . ................... K ¢ phase angle

Tr reference temperature. . ................... K £ frequency of the modulation ............. s

AT temperature difference betweenthewalls ... K o non-dimensional frequency, ff{—d

rium state becomes unstable, because at low frequencies theteady case. These works are restricted to a single compo-
disturbances grow to a sufficient size that the inertia effects nent fluid layer. To our knowledge no studies on the effect of
become more important. Rosenblat and Herbert [8], found temperature modulation on double diffusion convection in
the asymptotic solution of the low frequency and arbitrary a horizontal two component fluid layer are available in the
amplitude thermal modulation problem. The solution is dis- literature. The purpose of the present paper therefore, is to
cussed from the viewpoint of the stability or otherwise of study the effect of thermal modulation on double diffusive
the basic state, and possible stability criteria are analyzed.convection in a horizontal fluid layer.

They have also made some comparison with known exper-

imental results. Rosenblat and Tanaka [9] have also studied

the effect of thermal modulation on the onset of Rayleigh— 2. Mathematical formulation

Benard convection when the temperature gradient has both a

steady and time periodic component. It has been found that, We consider a viscous, incompressible two component
in general, there is enhancement of the critical value of a fluid layer of thickness! and infinite extent in the horizon-
suitably defined Rayleigh number. Roppo et al. [10] have tal direction subject to an adverse temperature gradient and
performed weakly nonlinear stability analysis and found that a stabilizing concentration gradient. A Cartesian coordinate
the modulation produces a range of stable hexagons near theystem is chosen with the origin in the lower boundary and
critical Rayleigh number. These authors have reported thatz-axis vertically upward. With the assumptions and approx-
for low frequencies the modulation is destabilizing, whereas imations frequently made for the study of double diffusive
at high frequencies some stabilization is apparent. Finucaneconvection in a horizontal two component fluid layer, the
and Kelly [11] performed both theoretical and experimen- basic equations are:

tal investigation of the thermal modulation in a horizontal

fluid layer. A numerical analysis of the linear stability equa- V-d=0 (1)

a 1
tions indicated that the linear assumption is valid at the low 99 Vq=——Vp+ £g+ W2 @)
frequencies of modulation. A nonlinear analysis employing ¢ PR OR
the shape assumption and free boundary conditions was de-yT
+q-VT =kp V2T ©)
veloped and examined numerically. They found both exper- 7~ a- T
imentally and numerically that at low frequencies the mod- 4g¢
ulation is destabilizing, whereas at high frequencies some 7~ +d- VS =ksVZS (4)
stabilization is apparent. _ B _ _
The above mentioned studies have reported that the ef-* _'OR[l AT = Tk) + Fa(S SR)] ©®)

fect of thermal modulation is to alter the critical value The time dependent wall temperatures are externally im-
of Rayleigh number by comparison with the unmodulated, posed, and are given by



M.S Malashetty, D. Basavaraja/ International Journal of Thermal Sciences 44 (2005) 323-332 325

AT
T:TR+7[1+scosS2t] atz=0 and (6a)

T:TR—A—ZT[l—scos(Qt+¢)] atz =d (6b)

Heree represents a small amplitud@, the frequency ang
the phase angle.
The boundary conditions on concentration are

AS
S=SR+7 atz=0 (73)
AS

We consider three types of temperature modulations namelyp = py + p/,

Case (a) symmetric (in phasg= 0),
Case (b) asymmetric (out of phages= ), and

Case (c) only lower wall temperature is modulated while

the upper one is held at constant temperafre:

The solution of Eq. (10) subject to the boundary condi-
tions (7) is

A 2
Sy = Sg + —5(1— —Z> (13b)

2 d
2.2. Linear stability analysis

For the small disturbances, we assume solutiorfdf,
S, p andp in the form

q=q. T=Tp+T. S=Sp+¥
p=pu+p (14)
where the prime indicates that the quantities are infinitesimal

perturbations.

Substituting Eq. (14) into Egs. (1)—(5) and using the basic
state equations and neglecting nonlinear terms in perturbed
guantities, we obtain the following equations for the per-

—i00). .
turbed quantities:
2.1. Basic state aqf 1
o =V (T~ B2S')gk + vV (15)
The basic state of the fluid is quiescent and is described PR
oT’ aT,
by o w(a—ZH) = k7 V2T’ (16)
q=1(0,0,0), T=Ty(z,t) 55 [ dSy w2 .
p=puG0.  p=puaD,  S=Sy() ® o TVl )T (7)

The temperaturel’y (z, t), solute concentratior§y (z),
pressurepy (z, t) and densityoy (z, t) satisfy the following
equations:

Ty 92Ty

9" _ . LH 9
ar T2 ©

d?Sy

e | 10
dz? (10)
opH

_8— =pPHE (11)

z
pr = pr[1— B1(Ty — Tr) + B2(Su — Sr)] (12)

The solution of Eq. (9) subject to the boundary condi-

wherek is the unit vector in the positivedirection.
The boundary conditions for the perturbed velocity, tem-
perature and solute concentration are
2,/
W= 1 _¢_0 az=0.d (18)
972
The boundary conditions on velocity are stress-free con-
ditions and those on temperature and solute represent that
the boundaries are perfectly conducting to heat and solute.
We eliminatep’ from Eq. (15) and render the resulting
equation and Eqgs. (16) and (17) dimensionless by using the
following non-dimensional variables

tions (6), consists of the sum of a steady temperature field (x, y, z) = (x*, y*, z*)d

T, (z) and an oscillating pa#7i(z, t):

Th(z,t) =Ts(2) +¢Ti(z, 1) (13a)
where

AT
To(2) = T + 7(1— %)

Ti(z,1) = % {Re{ [a()\)e)‘z/d + a(_)\)e—kz/d]e—ifzt}}

Qd?1Y? e 1P e
rmaso|3 ] =[]

andRe stands for the real part.

2
w = (K—T>w*, t= (d—>t*
d KT

T' = (AT)T*, S = (AS)S*
ATd3 ASd®
r=P8ATd™ ol PagASdT v
VKT VKT KT
Rd>
=5 e= (19)
KT KT

where R is the thermal Rayleigh numbeRs is the solute
Rayleigh numberPr is the Prandtl number; is the dif-
fusivity ratio andw is the frequency. The linearized non-
dimensional equations are written as (on dropping asterisks):
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(3 — Pr V2> V2w = RPr VT — RsPr VZ§ (20) in Eqg. (23) and equate coefficients of like powerssodn
ot both side to obtain (up to ordef)
ad oT,
(E —vz)Tz—w—aZH (21)  Lwo=0 (28)
ad
9 — = 2\ 2
(5 =+v)s=w ) Lwi=Pr(g o) (Rorsiug @9
d
where Lwy=Pr (5 - TVZ) {R2VZwo — Rof VZw) (30)
3% 9 82
Vie — 4 —, V2=vV24 — where
1=52 " 9y2 Lt 972

a a a

Egs. (20)—(22) are combined to obtain a single differential L= — —Pr V2= - V2| = —1V?)Vv?
\ X LS ot ot ot

equation for the vertical component of velocityas:

ad ad
{(3 . V2> (2 B VZ) (2 B rV2>V2 — RoPr<5 — rv2>vf+ RsPr(E — VZ)Vf
ot ot T ot andwo, w1, w2 are required to satisfy the boundary condi-
+R pr<3 _ ,v2> Tt g2 tions of Eq. (24).
ot 9z In Eq. (27) the odd powers of are missing because
9 2\o2l. changing the sign of shifts the time origin only which does
+ RsPr (a_; -V )Vl }w =0 (23) not affect the problem of stability and thuisshould be in-
The boundary conditions can also be expressed in terms Ofdepende_nt of the S9N G.f 8., Ry, R.?” -~ must be zero. .
by making use of (20), which requir P 0 at the The e|ggnfunct|onuo is the solution of the proplem with
g)our):daries Thus Eq (23)' is 1o be solved Zgub_ject 0 the ho-s =0, that is the unmodulated system. The marginally stable

. solutions for this problem are
mogeneous boundary conditions

2w 0w wg' =sinnmz (31)
=92 T 947 0 atz=0,1 (24) with corresponding eigenvalues
The dimensionless temperature gradient appearing in - (@?+ 17?3 Rs
Eq. (23) can be obtained from Eq. (13a) as Ry'=—"7—"+7 (32)
0TH = 14ef (25) For a fixed value o& the least eigenvalue occurs for= 1.
0z Ro assumes the minimum value given by
where 27 Rs
| i Ro= <—714+ —) (33a)
f=Re{[A)e"* + A(=1)e *¥]e "} 4 T
A ato = a, Whereo, is given b
h=Q1-iyw/2 and AG)=Za() . 59 Y
W= — (33b)
The horizontal dependence aof is factorable, and we V2
I0(2)k for soiutions with a single wave number such that (For details, see, e.g., [1].)
Viw = —a“w. The dependence ekp(/x + my)] of w on The equation forw; then takes the form
the horizontal coordinates is implied throughout. 3
Lwy = RoPr az(a — rV2>fSinJTz (34)

3. Method of solution Now let

We apply the perturbation method to obtain the eigen- (% - rVZ) = (~iw+ta® —tD? whereD = dﬂ
functionsw and eigenvalue of Eq. (23) for a temper- <
ature profile that departs from the linear one by terms of Thus
ordere. Thus it follows that the eigenfunctions and eigen-
values which are obtained in this problem differ from those

ad .
rrie TV2>fSInT[z
associated with the two component Rayleigh—Benard prob-

lem by quantities of order. -

Accordingly, we substitute

(26)
(27)

w:w0+8w1+82w2+--~
R=Ro+&’Ro+---

=[r(7?+a?) +iw(t — V)] fsinwz — 2tAnf cosnz
(35)

with

' =Re{[A)e™ — A(=1)e *¥]e ")
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Using Egs. (35), (34) becomes
Lwy = RoPro?Re|{Lyf sinwz — 2ntAf cosnz) (36)
where

L= ‘L'(JTZ —i—az) +iw(—=1)

We solve Eg. (36) forwy by expanding the right-hand

327

range ofe, by assigning values to the various physical pa-
rameters involved in the problem. Thus the range of the
amplitude of modulation, which causes subcritical instabili-
ties in different physical situations, can be explained.

To the order of2, R, is obtained for the cases where the
oscillating temperature field is (a) symmetric, (b) asymmet-
ric and (c) when only the lower wall temperature is oscil-

side in Fourier series expansions and inverting the operatorlating while upper wall is held at constant temperature. The

L term by term. Thus we obtain
A0 .
wlzRoPraz{le n) Sinnmze

L(w,n)
—27ATPry

By ()
L(w,n)

For details, see Appendix A. The equation fos then can

be written as

iot

cosnmze ' } (37)

Lwy = —RoPr ta?(a® + 7?) sinnz

+ RoPr«®Re{L, fw1 — 2t Df Dw1)} (38)

We shall not require the solution of this equation, but
merely use it to determin&®,, the first non-zero correc-
tion to R. The solubility condition requires that the time-

variation of Ry, with w for different values ofr, r andRs
are depicted in Figs. 1-6 and the results are discussed in the
next section.

4. Resultsand discussion

The effect of symmetric modulation of the boundary tem-
peratures on the onset of double diffusive convection is
shown in Figs. 1-3 for different values &, r and Rs.

We observe thaiR,. is negative at low frequencies, indi-

cating that the symmetric modulation advances the onset of
convection at low frequencies, that is, in the case of sym-
metric modulation the convection occurs at a lower thermal
Rayleigh number than in the unmodulated system. This re-

independent part of the right-hand side should be orthogonalgyt is identical to the results obtained by many investiga-

to sinz z. Therefore multiplying Eq. (38) by sinz and inte-
grating between 0 and 1 we obtain

R2a? X L1L*|A, (M)|2L*
Roe - R0 el 3o LaLiIANIEL (0. 1)
2t(@®+72) | o IL(w,n)|

nB,(A)L*(w,n)Ci(A)
|L(w, n)|?

o0
—4n2[322 Y (39)
n=1
For details, see Appendix A. In the above equation the sum-
mation extends over even values«dr case (a), odd values
of n for case (b) and for all integer valuesofor case (c).
The value of the Rayleigh nhumbet obtained by this

procedure is the eigenvalue corresponding to the eigenfunc-

tion w, which, though oscillating, remains bounded in time.
R is a function of the horizontal wave numbeand the am-
plitude of the modulatiom, accordingly we expand
R(a, £) = Ro(ar) + £°Ra(ar) + - --

a:a0+82a2+--~

(40)
(41)

The critical value of the thermal Rayleigh numlzers com-
puted up to @¢2) by evaluatingRo and R atap = a. given
by Eqg. (33b). It is only when one wishes to evalu&tg «>
must be taken in to account [7]. In view of this we write

R.(a, £) = Roc(0) + £2Rac(a0) (42)

whereRg. and Ry, can be obtained from Egs. (32) and (39),
respectively.

If Ro. is positive, supercritical instability exists aml
has minimum at = 0. When Ry, is negative, subcritical
instability is possible. In this case, we have from Eq. (42),
&2 < (Roc/R2c). From this we can determine the minimum

tors mentioned in the introduction section in case of single
component systems. However for large frequendies,is
positive, indicating that the high frequency symmetric mod-
ulation has a stabilizing effect. The peak valuerf. de-
pends on the Prandtl number, diffusivity ratio and the solute
Rayleigh number.

160
Symmetric modulation

Rs=10, t=0.05

Pr=1.0
-==-Pr=5.0
---- Pr=10.0

140

120 |

100

80

60

40

20

0 1 1 1 1
0.2 0.3 0.4
RZC/ ROc

0.5

Fig. 1. Variation ofR. with w for different values of the Prandtl numkier.
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160
Symmetric modulation
Rs=10, Pr=1.0

140 |

120 F

100 f

80 |

60 |

-0.1 0.0 0.1 0.2 0.3 0.4 0.5
R 20/ ROC

Fig. 2. Variation ofRy. with w for different values of the diffusivity ratio.

160
Symmetric modulation
1=0.05, Pr=1.0

Rs=10
= = =Rs=50
== Rs=100

140 |-

120 |

100 |

80 -

60 |

40

20

Fig. 3. Variation ofRy. with w for different values of the solute Rayleigh
numberRs.

Fig. 1 shows the variation at,. with w, for different val-
ues of Prandtl numbétr and fixed values of solute Rayleigh
numberRs and diffusivity ratioz, in respect of symmetric
modulation of the wall temperature. We find thigt. is pos-
itive over a wide range of values of the frequercyWe also
observe from the figure that as Prandtl numBemcreases,

120
I- Asymmetric modulation Rs=10, t=0.05
II-Lower wall temperature modulation

——Pr=1.0
= = =Pr=5.0
-+ Pr=10.0

2¢ Oc

Fig. 4. Variation ofR,. with w for different values of the Prandtl numker.

the value ofRy. decreases indicating that the effect of large
Prandtl number is to reduce the effect of the thermal modu-
lation. On the other hand small Prandtl number fluid system
is more stable in the presence of thermal modulation as com-
pared to the unmodulated system.

The effect of diffusivity ratiotr on Ry for the case of
symmetric modulation of the wall temperature is shown in
Fig. 2. We observe that an increase in the value afe-
creases the value d,.. This indicates that in case of sym-
metric modulation, the effect of an increase in the value of
diffusivity ratio is to minimize the effect of thermal mod-
ulation. It is important to note that small values ohave
strong stabilizing effect and on the other hand the effect of
modulation is small for larger.

The effect of solute Rayleigh numb&s on the stabil-
ity of the system for the case of symmetric modulation of
the wall temperature is shown in Fig. 3. We notice that an
increase in the value d®s increases the value dty., indi-
cating that the effect of large value of the solute Rayleigh
numberRs is to delay the onset of convection as expected.

Figs. 4-6 illustrates the effect of asymmetric modulation
and lower wall temperature modulation on the stability of
a two-component fluid system. It is important to note that
in these two types of modulatioRy. will become positive
for the whole range of values of the frequeneyexcept for
7 > 0.3 in case of lower wall temperature modulation. Thus
these two types of modulation have, in general, stabilizing
effect. The peak value at,. depends on the paramet&s
7 and the Prandtl number.

The effect of Prandtl number on the onset of convection
in the presence of asymmetric temperature modulation and
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140

1- Asymmetric modulation
1I-Lower wall temperature modulation

Rs=10, Pr=1.0

=0.01
=== 1=0.05

100 | \
80 [ i 1
60 [
40 | i

20

12 20 24

RZc/ ROc
Fig. 5. Variation ofR. with w for different values of the diffusivity ratio.

140

=0.05, Pr=1.0
Rs=10
— - -Rs=50
---- Rs=100

I- Asymmetric modulation
II-Lower wall temperature modulation

120

Fig. 6. Variation ofRy. with w for different values of the solute Rayleigh
numberRs.

lower wall temperature modulation with fixed valuesRsf
andr is shown in Fig. 4. We note from this figure that the ef-
fect of increasing Prandtl number is to minimize the effect of
modulation, as in the case of symmetric modulation (Fig. 1).
This result is similar to the one in the case of a single com-
ponent fluid layer with thermal modulation.

329

Fig. 5 depicts the variation aRy. with w, for different
values of the diffusivity ratio for the case of asymmetric
modulation and lower wall temperature modulation. The fig-
ure demonstrates that an increase in the valuedsfcreases
the value ofRy., indicating that, the larget reduces the
effect of thermal modulation, as in the case of symmetric
modulation (Fig. 3). Itis interesting to note th&s. become
very small forr > 0.3, for a range of values @ indicating
that for  larger than 0.3 the system matches the unmod-
ulated case in the presence of asymmetric modulation. In
case of lower wall temperature modulation, a range ek-
ists whereRy, is negative implying a destabilizing effect for
7 > 0.3. These results correspond to the parameter values
chosen in the computation.

The effect of solute Rayleigh numb&s on correction
Rayleigh numbeR,, for the case of asymmetric modulation
and lower wall temperature modulation is shown in Fig. 6.
We observe that there is a rangewfvhere increasingrs
decrease®,. and a range ab where the effect is opposite.
The range ofw also depends on other parameters and the
type of modulation.

In each case of modulation there is a critical frequency
(w¢) at which the correction Rayleigh numbRg. is maxi-
mum. It is highly impossible to obtain an explicit analytical
relation between this critical frequency and the correspond-
ing correction Rayleigh number. However the critical fre-
guencyw. at which the correction Rayleigh numbgg,. is
maximum (positive/negative) for different values of Prandtl
number, diffusivity ratio and the solute Rayleigh number is
reported in Tables 1 and 2. There are two peak values of
Ry, for the symmetric modulation, one positive and another
negative. On the other hand, for the asymmetric and only
lower wall temperature modulation casks. has only posi-
tive peak value except far > 0.3 in the case of lower wall
temperature modulation.

The low-frequency thermal modulation has a significant
effect on the stability of the system. The results of the present
study are expected to be useful in controlling convection by
thermal modulation, in a two-component system.

5. Conclusions

In the present paper we made an analytical study of the
effect of temperature modulation on double diffusive con-
vection in a two component horizontal fluid layer. The per-
turbation method is used to find the critical thermal Rayleigh
number as a function of frequency of the modulation, Prandtl
number, diffusivity ratio and solute Rayleigh number. Three
types of thermal modulations are considered and arrived at
the following conclusions:

(1) The low frequency symmetric modulation is destabiliz-
ing while high frequency symmetric modulation is al-
ways stabilizing. The asymmetric modulation and lower
wall temperature modulation are, in general, stabilizing
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Table 1 Table 2
Critical frequencyw,. and the corresponding correction Rayleigh number Critical frequencyw. and the corresponding correction Rayleigh number
Ro. for symmetric modulation Ro. for asymmetric and lower wall temperature modulation
(i) T = 0.050,Rs = 10 (i) T = 0.050,Rs= 10
Pr Negative W Positive [oF Pr Asymmetric modulation Lower wall temperature
peak value peak value modulation
Roc/Roc Roc/Roc Ro./Roe we Ro./Roe we
1.0 —-0.012 605 039 41 1.0 485 500 478 500
2.0 —0.007 655 023 50 2.0 314 750 309 705
3.0 —0.005 700 016 56 3.0 236 855 232 855
4.0 —0.004 7.05 012 58 4.0 190 900 186 905
5.0 —0.003 7.05 009 60 5.0 159 1000 156 1000
6.0 —0.003 750 008 62 6.0 136 1000 134 1005
7.0 —0.002 755 007 62 7.0 120 1050 118 1005
8.0 —0.002 755 006 62 8.0 107 1050 105 1050
9.0 —0.002 800 005 63 9.0 0.97 1055 095 1055
100 —0.001 855 004 65 100 0.88 1100 086 1055
(i) Pr = 1.0, Rs= 10 (i) Pr=1.0,Rs =10
T Negative wc Positive we T Asymmetric Lower wall temperature modulation
peak value peak value modulation
Rac/Roc Rac/Roc Ro./Ros o Positive we Negative o
0.05 —0.012 605 0398 4100 peak peak
0.07 —0.013 705 0252 4105 value value
0.10 —-0.014 805 0154 4150 Row/R Roe/R
0.30 —0.011 1305 0026 5000 2c/ 70c 2/ 70c
0.50 —0.008 1355 0007 5455 0.05 485 50 478 200 - -
0.70 —0.006 1355 0002 5805 0.07 119 05 1107 55 - -
0.10 148 05 1354 055 - -
(iif) Pr=1.0,7 =005 030 127 05 114 050 —0.20 2555
Rs Negative we Positive we 0.50 066 005 066 005 —0.65 2000
peak value peak value 0.70 049 0.05 049 005 —0.99 2050
Roc/Roc Roc/Roc (iiiy Pr=1.0,7 =0.05
10 —0.0121 605 039 41 Rs Asymmetric modulation Lower wall temperature
50 —0.0249 605 077 41 modulation
10 —-0.0428 605 124 41 Ro/R - "o/ R -
103 ~0.0012 655 476 70 n 208 . e o; 207 . e ;oo
10# —0.0001 700 674 99 50 4:23 14 433 150
107 3.76 19 438 220
10 2.36 60 737 650
10t 1137 64 1637 790

)

®3)

(4)

for all frequencies. However in case of lower wall tem-
perature modulation, there is a rangewofor which the
system is unstable whenis greater than 0.3. Thus, as  (5) The effect of modulation disappears for large frequen-
in the case of a single component system, thermal mod-  cies, so that the stability or instability of the system
ulation can destabilize a mode that is stable in the un- matches the unmodulated case, as in the case of a sin-
modulated case, or stabilize an unstable mode, with the  gle component system.

stability characteristics depending on the frequency of

the modulation, solute Rayleigh number, Prandtl num-

ber and the diffusivity ratio. Acknowledgements
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The effect of increasing solute Rayleigh number is to

stabilize the system in the case of symmetric modula-

tion. In case of asymmetric modulation and lower wall Appendix A

temperature modulation, there is a rangeafhere in-

creasingRs decrease®,. and a range ofv where the We solve Eg. (36) forwy by expanding the right-hand
effect is opposite. side of it in Fourier series expansions and inverting the oper-
The effect of small diffusivity ratio is to make the system ator L term by term. For this, we need the following Fourier
more stable in the presence of thermal modulation. series expansions:
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1
&nm(A) = 2/ e’ sinnmzsinmrzdz
0

_ Anmm [l + (1) Hmtler (A1)
T D24+ (n+m)22[32 + (n — m)2n2] '

1
Jam() =2 / ¢** cosnz cosmmz dz
0
2032 + (0* + mA)r?)[1+ (="
[A2 4+ (n + m)27w2][A2 + (n — m)27?]

(A.2)
so that
o0
e sinmmrz = Z &nm SINRTZ (A.3)
n=1
o0
< cosmmz =) fumcCOSATZ (A.4)
n=1
Let us now define
L(w,n) = (0?*B1 — B3) — iwB, (A5)

where
B1 = (¢ +n?1?)*(t + (1+Pr))
By = w?(a® + n?m?)
— (2 +n%7?)*(Pr + T (14 Pr)) + Pro®(Ro — Rs)
B3 =1 Pr(a?+n?m?)* — Pro?(a? + nz?)(x Ro — RS)
It is easily seen that
L(sinnmze™") = L(w,n) sinnmze™'"!
L(cosnmze ") = L(w, n) cosnmze !

and Eq. (36) now reads

Lwy = RoPr azRe{Z Li[A(V) g (V)
+ A=) gn1(—1)] sinnmze ™"

— 2721 Y _[AQ) fur (M)

+ AR fra(—2)] COSnnze_i“”} (A.6)
so that

A,(L) . .
w1 = RoPr az{Ll Z W(,Z) sinnmwze !
_ B, (1) it

20T Pry o cosmze } (A7)

where

Ay(A) = A()V)gnl()\) + A(_)\)gnl(_)\)
By () = AX) fu1(A) — A(=2) fr1(—=2)

To simplify Eq. (30) forw,, we need

(% — tV2>fw1 =L, fwi—2tDfDw (A.8)
where
L,= r(az + nznz) +iw(t —1)
The equation fow> then can be written as
Lwy =—RoPr totz(otz + 712) sinmz
+ RoPro®Re{L, fw1 — 2t Df Dw1)} (A.9)

The solubility condition requires that the time-indepen-
dent part of the right-hand side of Eq. (A.9) must be orthog-
onal to sinrz. Multiply Eq. (A9) by sinrz and integrating
between 0 and 1 we obtain

1
2Ro _—
Ro=|———+|Rel1 L, sinzzd
o[t e s
0

1

-2t / Df Dwisinmz dz} (A.10)
0
where an over bar denotes the time average.
We have the Fourier series expansions
fsintz=Re) " A,()sinnwze " (A.11)
Df sintz =Re) AC,(A)sinnmze " (A.12)

where

Cn(M) = AW gn1(A) — A(=A)gn1(—2)

We also note the fact that the time average of product of
two complex functionsA and B is given by

— 1 1

2
1
A-B:—/ABdt:—A*Bz—AB>‘< (A.13)
27 2
0

2

wherex denotes a complex conjugate.
Using Egs. (A.12) and (A.13) in Eqg. (A.11) we obtain
_ R o i L1Ly|An () PL* (@, n)

2t (a2 + 12) |L(w, n)|?

Ry
n=1
o0

—an?p222y 0 Qﬁfgi;;c: @ } (A.14)
n=1 ’

Eq. (A.9) can now be solved far,, and the procedure may
be continued to obtain further correctionstcand R.

We need the real part ¢iL1L} L*) which can be easily
calculated

Re|L1L}L*} = (w?B1 — B3)Bs+ wB2Bs (A.15)

|L(w,n)|* = (0?B1 — B3)? + &2B3 (A.16)
4.2 2

|4, = 16n n%w (A.17)

T [@0?+ (n + DA [w? + (n — DA
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